MATH 2028 Integration on submanifolds of \mathbb{R}^{n}
Goal: Define k-dimensional submanifolds of \mathbb{R}^{n} and discuss how to do integration on them.

Recall: curves in \mathbb{R}^{n}
Surfaces in \mathbb{R}^{3}

We first generalize it to any dimension.
Def: A k-dimensional parametrized submanifold of \mathbb{R}^{n} is a $C^{\prime} \operatorname{map} g: U \stackrel{\text { open }}{\subseteq} \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ st.

- g is 1-1, onto its image $S=g(u)$
- $\operatorname{rank}(D g)=k$ everywhere in u

Any such g is called a parametrization of S.
We can piece together such parametrized submanifolds to form a global submanifold, which may not be expressed globally by a single parametrization (eg. $\begin{aligned} & \text { spheres }) .\end{aligned}$

Def: A subset $M \subseteq \mathbb{R}^{n}$ is called a k-dimensional
submanifold of \mathbb{R}^{n} with boundary if $\forall P \in M$. $\exists W \stackrel{\text { open }}{S} \mathbb{R}^{n}$ containing P and a parametrization $g: u \rightarrow \mathbb{R}^{n}$ st.
(i) $g(u)=W \cap M$
(ii) $U^{\text {open }} \mathbb{R}^{k}$ or $U^{\text {open }} \subseteq \mathbb{R}_{+}^{k}:=\left\{x_{k} \geq 0\right\}$

Note that the tangent space $T_{p} M$ at $P \in M$ is spanned by the basis (denote $g=S\left(u_{1}, \ldots, u_{k}\right)$)

$$
\left\{\frac{\partial g}{\partial u_{1}}, \frac{\partial g}{\partial u_{2}}, \ldots . \frac{\partial g}{\partial u_{k}}\right\} \subseteq T_{p} M
$$

Using this basis, we can define

$$
g_{i j}==\frac{\partial g}{\partial u_{i}} \cdot \frac{\partial g}{\partial u_{j}} . \quad i, j=1, \ldots, h
$$

Denote $\left(g_{i j}\right)$ to be the $k \times k$ matrix.
Def n: For any cts function $f: M \rightarrow \mathbb{R}$ on a k-dimensional submanifold $M \subseteq \mathbb{R}^{n}$ parametrized by $g: u \rightarrow M=g(u)$, we define the integral of f as

$$
\int_{M} f d \sigma==\int_{u} f \circ g \cdot \sqrt{\operatorname{det}\left(g_{i j}\right)} d V
$$

In particular. $\operatorname{Area}(M)==\int_{M} 1 d \sigma$.
Example: Let $M \subseteq \mathbb{R}^{4}$ be the 2 -dinil submaniford parametrized by $g:(0,2 \pi) \times(0,2 \pi) \longrightarrow \mathbb{R}^{4}$

$$
g(u, v)=\left(\frac{1}{\sqrt{2}} \cos u, \frac{1}{\sqrt{2}} \sin u, \frac{1}{\sqrt{2}} \cos v, \frac{1}{\sqrt{2}} \sin v\right)
$$

Then, the area of M is given by

$$
\text { Area }(M)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \sqrt{\operatorname{det}\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)} d u d v=2 \pi^{2}
$$

An orientation on M is a continuously choice of "positively" oriented basis on each TpM. If such choice exists, we say M is orientable.

For surfaces $M \subseteq \mathbb{R}^{3}$, this can be alternatively described by a globally defined unit normal n to getter with the "right hand rule".

FACT: M orientable \Leftrightarrow nowhere vanishing k-form on M

Defy : Let $M \subseteq \mathbb{R}^{n}$ be an oriented k-submanifold. The volume form of M is a k-form σ with the property that

$$
\sigma(p)(\underbrace{V_{1}, \ldots, V_{k}}_{\text {vectors in } T_{p} M})=\begin{aligned}
& \text { signed volume of parallelepiped } \\
& \text { spanned by } V_{1} \ldots ., V_{k}
\end{aligned}
$$

We now more on to discuss how to integrate k - forms on k-dimensional submanifolds $M \subseteq \mathbb{R}^{n}$.

For an n-form $\omega=f(x) d x_{1} \wedge \ldots \wedge d x_{n}$ in a domain $\Omega \subseteq \mathbb{R}^{n}$, we define:

$$
\int_{\Omega} \omega:=\int_{\Omega} f d V
$$

Then, the Change of Variable Theorem can be expressed as: $g: \Omega \subseteq \mathbb{R}^{n} \rightarrow g(\Omega)=S \subseteq \mathbb{R}^{n}$
\square where

$$
\int_{S} w=\int_{\Omega} g^{*} w
$$

$$
\begin{gathered}
\omega=f(x) d x_{0} \wedge \cdots n d x_{n} \\
\binom{\text { Reason: } S^{*}\left(d x_{1} \cap \ldots \wedge d x_{n}\right)}{=\operatorname{det}(D g) d x_{1} \cap \ldots \wedge d x_{n}}
\end{gathered}
$$

Def: Given a parametrization $g: u \rightarrow \mathbb{R}^{n}$ of a k-dim'\& submanifola $M=g(U)$ and a k-form w in \mathbb{R}^{n}, we define

$$
\int_{M} w:=\int_{u} g^{*} \omega
$$

Integral of k-forms on k-submanifolds

Consequence: Suppose $g_{1}: u_{1} \rightarrow \mathbb{R}^{n}, g_{2}: u_{2} \rightarrow \mathbb{R}^{n}$ are parametrization of the same k-submanifold M. then by Change of Variable Theorem.

$$
\int_{u_{1}} g_{1}^{*} w=\int_{u_{2}} g_{2}^{*} w
$$

Hence, the definition above is independent on the choice of parametrization. From this, we can define the integral of k-forms on a k-dim'l submanifold Which is not necessarily covered by one parametrization. The "trick" is again "Partition of unity"

Fact: Let $M \subseteq \mathbb{R}^{n}$ be a compact k-dim'l suburfa with boundary. THEN, \exists smooth functions

$$
P_{i}: M \rightarrow[0,1] \quad, \quad i=1, \ldots, N
$$

each P_{i} is supported in some parametrization and $\quad \sum_{i=1}^{N} f_{i}(x)=1 \quad \forall x \in M$

Deft: Let $M \subseteq \mathbb{R}^{n}$ be a compact, oriented. k - dim'l submanifuld with bound any. and ω be a k-form on \mathbb{R}^{n}. Suppose $\left\{P_{i}\right\}_{i=1}^{N}$ is a partition of unity as above and $\operatorname{spt}\left(\rho_{i}\right)$ is Contained in the parametrization $g_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ which is "orientation-preserving". THEN, we define

$$
\int_{M} w==\sum_{i=1}^{N} \int_{g_{i}\left(u_{i}\right)} f_{i} w
$$

